当前位置: 首页 · 基础知识 ·

生物化学

第一章 蛋白质化学(Chemistry of Protein)
作者: 发布日期:2020/10/01 点击量:


蛋白质(Protein)是生物体的基本组成成份。在人体内蛋白质的含量很多,约占人体固体成分的45%,它的分布很广,几乎所有的器官组织都含蛋白质,并且它又与所有的生命活动密切联系。例如,机体新陈代谢过程中的一系列化学反应几乎都依赖于生物催化剂-酶的作用,而本科的质就是蛋白质;调节物质代谢的激素有许多也是蛋白质或它的衍生物;其它诸如肌肉的收缩,血液的凝固,免疫功能,组织修复以及生长、繁殖等主要功能无一不与蛋白质相关。近代分子生物学的研究表明,蛋白质在遗传信息的控制、细胞膜的通透性、神经冲动的发生和传导以及高等动物的记忆等方面都起着重要的作用。

第一节 蛋白质分子的组成

一、蛋白质的元素组成

单纯蛋白质的元素组成为碳50~55%、氢6%~7%、氧19%~24%、氮13%~19%,除此之外还有硫0~4%。有的蛋白质含有磷、碘。少数含铁、铜、锌、锰、钴、钼等金属元素。

各种蛋白质的含氮量很接近,平均为16%。由于体内组织的主要含氮物是蛋白质,因此,只要测定生物样品中的氮含量,就可以按下式推算出蛋白质大致含量。

每克样品中含氮克数×6.25×100=100克样品中蛋白质含量(克%)

二、蛋白质的基本组成单位——氨基酸

蛋白质可以受酸、碱或酶的作用而水解。例如,一种单纯蛋白质用6N盐酸在真空下110℃水解约16小时,可达到完全水解(酸水解的条件下,色氨酸、酪氨酸易被破坏)。利用层析等手段分析水解液,就可证明组成蛋白质分子的基本单位是氨基酸。构成天然蛋白质的氨基酸共20种。

这些氨基酸为L-α-氨基酸(L-α-amino acid),其结构通式如下:

L-α-氨基酸(L-α-amino acid)结构通式

生物界中也发现一些D系氨基酸,主要存在于某些抗菌素以及个别植物的生物碱中。

三、氨基酸的分类

组成蛋白质的氨基酸按其α-碳原子上侧链R的结构分为20种,20种氨基酸按R的结构和极性的不同有以下两种分类方法。

(一)根据R的结构不同分类(见表1-1):

氨基酸的分类

接上表

氨基酸的分类

1.脂肪族氨基酸(包括棸被鶙羧基酸、一氨基二羧基酸、二氨基-羧基酸)。

2.芳香族氨基酸。

3.杂环族氨基酸。

4.杂环亚氨基酸。

(二)根据侧链R的极性不同分为非极性和极性氨基酸

氨基酸的R基团不带电荷或极性极微弱的属于非极性中性氨基酸,如:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、蛋氨酸、苯丙氨酸、色氨酸、脯氨酸。它们的R基团具有疏水性。

氨基酸的R基团带电荷或有极性的属于极性氨基酸,它们又可分为:

(1)极性中性氨基酸:R基团有极性,但不解离,或仅极弱地解离,它们的R基团有亲水性。如:丝氨酸、苏氨酸、半胱氨酸、酪氨酸、谷氨酰胺、天门冬酰胺。

(2)酸性氨基酸:R基团有极性,且解离,在中性溶液中显酸性,亲水性强。如天门冬氨酸、谷氨酸。

(3)碱性氨基酸:R基团有极性,且解离,在中性溶液中显碱性,亲水性强。如组氨酸、赖氨酸、精氨酸。

这20种氨基酸都有各自的遗传密码,它们是生物合成蛋白质的构件,无种属差异。在体内,一些特殊蛋白质分子中还含有其它氨基酸,如甲状腺球蛋白中碘代酪氨酸,胶原蛋白中的羟脯氨酸及羟赖氨酸,某些蛋白质分子中的胱氨酸等,它们都是在蛋白质生物合成之后(或合成过程中),相应的氨基酸残基被修饰形成的。还有的是在物质代谢过程中产生,如鸟氨酸(由精氨酸转变来的等,这些氨基酸在生物体内都没有相应的遗传密码。

第二节 蛋白质分子中氨基酸的连接方式

在蛋白质分子中,氨基酸之间是以肽键(peptide bond)相连的。肽键就是一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合形成的键。

蛋白质分子中氨基酸的连接方式

氨基酸之间通过肽键联结起来的化合物称为肽(peptide)。两个氨基酸形成的肽叫二肽,三个氨基酸形成的肽叫三肽……,十个氨基酸形成的肽叫十肽,一般将十肽以下称为寡肽(oligopeptide),以上者称多肽(polypeptide)或称多肽链。

组成多肽链的氨基酸在相互结合时,失去了一分子水,因此把多肽中的氨基酸单位称为氨基酸残基(amino acid residue)。

在多肽链中,肽链的一端保留着一个α-氨基,另一端保留一个α-羧基,带α-氨基的末端称氨基末端(N端);带α-羧基的末端称羧基末端(C端)。书写多肽链时可用略号,N端写于左侧,用H?做标帜,C端于右侧用桹H表示。肽详细命名时为××酰××酰……××酸。

第二节 蛋白质分子中氨基酸的连接方式

例如谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸三个氨基酸所组成的三肽,全名是γ-谷氨酰半胱氨酰甘氨酸,简称谷胱甘肽(glutachione,简写GSH)。其中N末端的谷氨酸是通过γ-羧基与半胱氨酸的氨基相连,这是一个例外。

第二节 蛋白质分子中氨基酸的连接方式

第三节 蛋白质的结构及其功能

蛋白质为生物高分子物质之一,具有三维空间结构,因而执行复杂的生物学功能。蛋白质结构与功能之间的关系非常密切。在研究中,一般将蛋白质分子的结构分为一级结构与空间结构两类。

一、蛋白质的一级结构

蛋白质的一级结构(primarystructure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。

迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。

蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。

胰岛素的一级结构

图1-1 胰岛素的一级结构

二、蛋白质的空间结构

蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。

蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。

(一)蛋白质的二级结构

蛋白质的二级结构(secondarystructure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

1.肽键平面(或称酰胺平面,amide plane)。

Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,得出图1-2所示结构,从一个肽键的周围来看,得知:

肽键平面示意图

图1-2 肽键平面示意图

(1)

(一)蛋白质的二级结构

中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。

(2)

(一)蛋白质的二级结构

 肽键的C及N周围三个键角之和均为360°,说明都处于一个平面上,也就是说

(一)蛋白质的二级结构

六个原子基本上同处于一个平面,这就是肽键平面。肽链中能够旋转的只有α碳原子所形成的单键,此单键的旋转决定两个肽键平面的位置关系,于是肽键平面成为肽链盘曲折叠的基本单位。

(3) 肽键中的C-N既具有双键性质,就会有顺反不同的立体异构,已证实

(一)蛋白质的二级结构

处于反位(见图1-3)。

反式肽单元和顺式肽单元

图1-3 反式肽单元和顺式肽单元

2.蛋白质主链构象的结构单元

1)α-螺旋Pauling等人对α-角蛋白(α-keratin)进行了X线衍射分析,从衍射图中看到有0.5~0.55nm的重复单位,故推测蛋白质分子中有重复性结构,并认为这种重复性结构为α-螺旋(α-helix)见图1-4。

蛋白质分子的α-螺旋

图1-4 蛋白质分子的α-螺旋

α-螺旋的结构特点如下:

(1)多个肽键平面通过α-碳原子旋转,相互之间紧密盘曲成稳固的右手螺旋。

(2)主链呈螺旋上升,每3.6个氨基酸残基上升一圈,相当于0.54nm,这与X线衍射图符合。

(3)相邻两圈螺旋之间借肽键中C=O和H桸形成许多链内氢健,即每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,这是稳定α-螺旋的主要键。

(4)肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之它是亚氨基酸,不易形成氢键,故不易形成上述α-螺旋;甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。

2)β-片层结构Astbury等人曾对β-角蛋白进行X线衍射分析,发现具有0.7nm的重复单位。如将毛发α-角蛋白在湿热条件下拉伸,可拉长到原长二倍,这种α-螺旋的X线衍射图可改变为与β-角蛋白类似的衍射图。说明β-角蛋白中的结构和α-螺旋拉长伸展后结构相同。两段以上的这种折叠成锯齿状的肽链,通过氢键相连而平行成片层状的结构称为β-片层(β-pleatedsheet)结构或称β-折迭(图1-5)。

蛋白质分子中的β-片层结构

图1-5 蛋白质分子中的β-片层结构

左:顺向平行 右:逆向平行

β-片层结构特点是:

①是肽链相当伸展的结构,肽链平面之间折叠成锯齿状,相邻肽键平面间呈110°角。氨基酸残基的R侧链伸出在锯齿的上方或下方。

②依靠两条肽链或一条肽链内的两段肽链间的C=O与H梄形成氢键,使构象稳定。

③两段肽链可以是平行的,也可以是反平行的。即前者两条链从“N端”到“C端”是同方向的,后者是反方向的。β-片层结构的形式十分多样,正、反平行能相互交替。

④平行的β-片层结构中,两个残基的间距为0.65nm;反平行的β-片层结构,则间距为0.7nm。

3)β-转角

蛋白质分子中,肽链经常会出现180°的回折,在这种回折角处的构象就是β-转角(β-turn或β-bend)。β-转角中,第一个氨基酸残基的C=O与第四个残基的N桯形成氢键,从而使结构稳定(图1-6)。

(一)蛋白质的二级结构

图1-6 蛋白质分子中的β-转角

4)无规卷曲

没有确定规律性的部分肽链构象,肽链中肽键平面不规则排列,属于松散的无规卷曲(random coil)。

(一)蛋白质的二级结构

图1-7 蛋白质的超二级结构示意

a.αα组合 b.βββ组合 c.βαβ组合

(二)超二级结构和结构域

超二级结构(supersecondarystructure)是指在多肽链内顺序上相互邻近的二级结构常常在空间折叠中靠近,彼此相互作用,形成规则的二级结构聚集体。目前发现的超二级结构有三种基本形式:α螺旋组合(αα);β折叠组合(βββ)和α螺旋β折叠组合(βαβ)(图1-7),其中以βαβ组合最为常见。它们可直接作为三级结构的“建筑块”或结构域的组成单位,是蛋白质构象中二级结构与三级结构之间的一个层次,故称超二级结构。

结构域(domain)也是蛋白质构象中二级结构与三级结构之间的一个层次。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,形成二个或多个在空间上可以明显区别它与蛋白质亚基结构的区别。一般每个结构域约由100-200个氨基酸残基组成,各有独特的空间构象,并承担不同的生物学功能。如免疫球蛋白(IgG)由12个结构域组成,其中两个轻链上各有2个,两个重链上各有4个;补体结合部位与抗原结合部位处于不同的结构域。一个蛋白质分子中的几个结构域有的相同,有的不同;而不同蛋白质分子之间肽链中的各结构域也可以相同。如乳酸脱氢酶、3-磷酸甘油醛脱氢酶、苹果酸脱氢酶等均属以NAD+为辅酶的脱氢酶类,它们各自由2个不同的结构域组成,但它们与NAD+结合的结构域构象则基本相同。

蛋白质三级结构中某些次级键

图1-8 蛋白质三级结构中某些次级键

(三)蛋白质的三级结构

蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折迭形成具有一定规律的三维空间结构,称为蛋白质的三级结构(tertiary structure)。蛋白质三级结构的稳定主要靠次级键,包括氢键、疏水键、盐键以及范德华力(Van der Wasls力)等(图1-8)。这些次级键可存在于一级结构序号相隔很远的氨基酸残基的R基团之间,因此蛋白质的三级结构主要指氨基酸残基的侧链间的结合。次级键都是非共价键,易受环境中pH、温度、离子强度等的影响,有变动的可能性。二硫键不属于次级键,但在某些肽链中能使远隔的二个肽段联系在一起,这对于蛋白质三级结构的稳定上起着重要作用。

现也有认为蛋白质的三级结构是指蛋白质分子主链折叠盘曲形成构象的基础上,分子中的各个侧链所形成一定的构象。侧链构象主要是形成微区(或称结构域domain)。对球状蛋白质来说,形成疏水区和亲水区。亲水区多在蛋白质分子表面,由很多亲水侧链组成。疏水区多在分子内部,由疏水侧链集中构成,疏水区常形成一些“洞穴”或“口袋”,某些辅基就镶嵌其中,成为活性部位。

具备三级结构的蛋白质从其外形上看,有的细长(长轴比短轴大10倍以上),属于纤维状蛋白质(fibrous protein),如丝心蛋白;有的长短轴相差不多基本上呈球形,属于球状蛋白质(globular protein),如血浆清蛋白、球蛋白、肌红蛋白,球状蛋白的疏水基多聚集在分子的内部,而亲水基则多分布在分子表面,因而球状蛋白质是亲水的,更重要的是,多肽链经过如此盘曲后,可形成某些发挥生物学功能的特定区域,例如酶的活性中心等。

(四)蛋白质的四级结构

具有二条或二条以上独立三级结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构称为蛋白质的四级结构(quarternary structure)。其中,每个具有独立三级结构的多肽链单位称为亚基(subunit)。四级结构实际上是指亚基的立体排布、相互作用及接触部位的布局。亚基之间不含共价键,亚基间次级键的结合比二、三级结构疏松,因此在一定的条件下,四级结构的蛋白质可分离为其组成的亚基,而亚基本身构象仍可不变。

一种蛋白质中,亚基结构可以相同,也可不同。如烟草斑纹病毒的外壳蛋白是由2200个相同的亚基形成的多聚体;正常人血红蛋白A是两个α亚基与两个β亚基形成的四聚体;天冬氨酸氨甲酰基转移酶由六个调节亚基与六个催化亚基组成。有人将具有全套不同亚基的最小单位称为原聚体(protomer),如一个催化亚基与一个调节亚基结合成天冬氨酸氨甲酰基转移酶的原聚体。

某些蛋白质分子可进一步聚合成聚合体(polymer)。聚合体中的重复单位称为单体(monomer),聚合体可按其中所含单体的数量不同而分为二聚体、三聚体……寡聚体(oligomer)和多聚体(polymer)而存在,如胰岛素(insulin)在体内可形成二聚体及六聚体。

肌红蛋白的三级结构和丙糖磷酸异构酶的三级结构图

图1-9 肌红蛋白的三级结构和丙糖磷酸异构酶的三级结构图

面红蛋白亚基结合模式图

图1-10 面红蛋白亚基结合模式图

三、蛋白质的结构与功能的关系

(一)蛋白质的一级结构与其构象及功能的关系

蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。

Anfinsen以一条肽链的蛋白质核糖核酸酶为对象,研究二硫键的还原和氧化问题,发现该酶的124个氨基酸残基构成的多肽链中存在四对二硫键,在大量β-巯基乙醇和适量尿素作用下,四对二硫键全部被还原为桽H,酶活力也全部丧失,但是如将尿素和β-巯基乙醇除去,并在有氧条件下使巯基缓慢氧化成二硫键,此时酶的活力水平可接近于天然的酶。Anfinsen在此基础上认为蛋白质的一级结构决定了它的二级、三级结构,即由一级结构可以自动地发展到二、三级结构(图1-10)。

一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且在系统发生上进化位置相距愈近的差异愈小(表1-2,表1-3)。

表1-2 胰岛素分子中氨基酸残基的差异部分

胰岛素来源 氨基酸残基的差异部分
A5 A6 A10 A30
Thr Ser Ile Thr
Thr Ser Ile Ala
Thr Ser Ile Ala
Thr Ser Ile Ser
Ala Ser Val Ala
Ala Gly Val Ala
Thr Gly Ile Ala
抹香猄 Thr Ser Ile Ala
鲤猄 Ala Ser Thr Ala

表1-3 细胞色素C分子中氨基酸残基的差异数目及分歧时间

不同种属 氨基酸残基的差异数目 分歧时间(百万年)
人-猴 1 50-60
人-马 12 70-75
人-狗 10 70-75
猪-牛-羊 0
马-牛 3 60-65
哺乳类-鸡 10-15 280
哺乳类-猢 17-21 400
脊椎动物-酵母 43-48 1,100

核糖核酸酶的变性和复性示意图

图1-11 核糖核酸酶的变性和复性示意图

(A)天然核糖核酸酶(B)变性失活(C)“错乱”核糖核酸酶

促肾上腺皮质激素(ACTH)和促黑激素(MSH)均为垂体分泌的多肽激素。α-MSH和ACTh 4~10位的氨基酸结构与β-MSH的11~17位一样,故ACTH有较弱的MSH的生理作用(图1-12)。

在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因上遗传信息的突变(如图1-13)。

ACTH、α-MSH和β-MSH一级结构比较

图1-12 ACTH、α-MSH和β-MSH一级结构比较

正常 DNA ……TGt GGG CTT CTT TTT……
mRNA ACA CCC GAA GAA AAA
DNA(β亚基) N端…苏-脯-谷-谷-赖……
异常 DNA ……TGT GGG GAT CTT TTT……
mRNA ……ACa CCC GUA GAA AAA……
hbs(β亚基) N端…苏-脯-缬-谷-赖……

图1-13 镰刀状红细胞性贫血血红蛋白遗传信息的异常

(二)蛋白质空间橡象与功能活性的关系

蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋白质在复性后,构象复原,活性即能恢复。

在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现象称为蛋白质的别构效应(allostery)。

蛋白质(或酶)的别构效应,在生物体内普遍存在,这对物质代谢的调节和某些生理功能的变化都是十分重要的。

现以血红蛋白(hemoglobin,简写Hb)为例来说明构象与功能的关系。

血红蛋白是红细胞中所含有的一种结合蛋白质,它的蛋白质部分称为珠蛋白(globin),非蛋白质部分(辅基)称为血红素(见图1-14)。Hb分子由四个亚基构成,每一亚基结合一分子血红素。正常成人Hb分子的四个亚基为两条α链,两条β链。α链由141个氨基酸残基组成,β链由146个氨基酸残基组成,它们的一级结构均已确定。每一亚基都具有独立的三级结构,各肽链折叠盘曲成一定构象,β亚基中有8个α-螺旋区(分别称A、B……H螺旋区),α亚基中有7个α-螺旋区。在此基础上肽链进一步折叠形成球状,依赖侧链间形成的各种次级键维持稳定,使之球形表面为亲水区,球形向内,在E和F螺旋段间的20多个巯水氨基酸侧链构成口袋形的疏水区,辅基血红素就嵌接在其中,α亚基和β亚基构象相似,最后,四个亚基α2β2聚合成具有四级结构的Hb分子(见图1-15)。在此分子中,四个亚基沿中央轴排布四方,两α亚基沿不同方向嵌入两个β亚基间,各亚基间依多种次级健联系,使整个分子呈球形,这些次级键对于维系Hb分子空间构象有重要作用,例如在四亚基间的8对盐键(图1-16),它们的形成和断裂将使整个分子的空间构象发生变化。

血红素的结构式

图1-14 血红素的结构式

血红蛋白β亚基的构象

图1-15 血红蛋白β亚基的构象

ABCDEFGH分别代表不同的α-螺旋区。共有八个螺旋区;阿拉伯数字代表在该区氨基酸残基的序号;a-螺旋区之间的移行部位为无规卷曲,用AB,CD,EF,FG…等表示。C1,E7,C5,CF,C3,E3,的中间为血红素,其中较大的黑点代表Fe2+。

血红蛋白亚基间盐键示意图

图1-16 血红蛋白亚基间盐键示意图

铁原子在氧合时落入血红素平面

图1-7 铁原子在氧合时落入血红素平面

三、蛋白质的结构与功能的关系

图1-18

Hb的氧饱和曲线

图1-19 Hb的氧饱和曲线

Hb在体内的主要功能为运输氧气,而Hb的别位效应,极有利于它在肺部与O2结合及在周围组织释放O2。

Hb是通过其辅基血红素的Fe++与氧发生可逆结合的,血红素的铁原子共有6个配位键,其中4个与血红素的吡咯环的N结合,一个与珠蛋白亚基F螺旋区的第8位组氨酸(F8)残基的咪唑基的N相连接,空着的一个配位键可与O2可逆地结合,结合物称氧合血红蛋白。

在血红素中,四个吡咯环形成一个平面,在未与氧结合时Fe++的位置高于平面0.7Å,一旦O2进入某一个α亚基的疏水“口袋”时,与Fe++的结合会使Fe++嵌入四吡咯平面中,也即向该平面内移动约0.75Å(图1-17),铁的位置的这一微小移动,牵动F8组氨酸残基连同F螺旋段的位移,再波及附近肽段构象,造成两个α亚基间盐键断裂,使亚基间结合变松,并促进第二亚基的变构并氧合,后者又促进第三亚基的氧合(图1-18)使Hb分子中第四亚基的氧合速度为第一亚基开始氧合时速度的数百倍。此种一个亚基的别构作用,促进另一亚基变构的现象,称为亚基间的协同效应(cooperativity),所以在不同氧分压下,Hb氧饱和曲线呈“S”型(图1-19)。

第四节 蛋白质的理化性质

蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。

一、蛋白质的胶体性质

蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。

与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。

蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。沉降速度与向心加速度之比值即为蛋白质的沉降系数S。校正溶剂为水,温度20℃时的沉降系数S20·w可按下式计算:

一、蛋白质的胶体性质

式中X为沉降界面至转轴中心的距离,W为转子角速度,W2X为向心加速度,dX/dt为沉降速度。单位用S,即Svedberg单位,为1×1013秒,分子愈大,沉降系数愈高,故可根据沉降系数来分离和检定蛋白质。

二、蛋白质的两性电离和等电点

蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectric point,简写pI)。处于等电点的蛋白质颗粒,在电场中并不移动。蛋白质溶液的pH大于等电点,该蛋白质颗粒带负电荷,反之则带正电荷。

二、蛋白质的两性电离和等电点

各种蛋白质分子由于所含的碱性氨基酸和酸性氨基酸的数目不同,因而有各自的等电点。

凡碱性氨基酸含量较多的蛋白质,等电点就偏碱性,如组蛋白、精蛋白等。反之,凡酸性氨基酸含量较多的蛋白质,等电点就偏酸性,人体体液中许多蛋白质的等电点在pH5.0左右,所以在体液中以负离子形式存在。

三、蛋白质的变性

天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。

变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。

引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。

变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。例如,前述的核糖核酸酶中四对二硫键及其氢键。在β?巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如经过透析去除尿素,β?巯基乙醇,并设法使疏基氧化成二硫键,酶蛋白又可恢复其原来的构象,生物学活性也几乎全部恢复,此称变性核糖核酸酶的复性。

许多蛋白质变性时被破坏严重,不能恢复,称为不可逆性变性。

四、蛋白质的沉淀

蛋白质分子凝聚从溶液中析出的现象称为蛋白质沉淀(precipitation),变性蛋白质一般易于沉淀,但也可不变性而使蛋白质沉淀,在一定条件下,变性的蛋白质也可不发生沉淀。

蛋白质所形成的亲水胶体颗粒具有两种稳定因素,即颗粒表面的水化层和电荷。若无外加条件,不致互相凝集。然而除掉这两个稳定因素(如调节溶液pH至等电点和加入脱水剂)蛋白质便容易凝集析出。

蛋白质胶体颗粒的沉淀

图1-20 蛋白质胶体颗粒的沉淀

从图1-0可以看出,如将蛋白质溶液pH调节到等电点,蛋白质分子呈等电状态,虽然分子间同性电荷相互排斥作用消失了。但是还有水化膜起保护作用,一般不致于发生凝聚作用,如果这时再加入某种脱水剂,除去蛋白质分子的水化膜,则蛋白质分子就会互相凝聚而析出沉淀;反之,若先使蛋白质脱水,然后再调节pH到等电点,也同样可使蛋白质沉淀析出。

引起蛋白质沉淀的主要方法有下述几种:

(一)盐析(Salting Out)

在蛋白质溶液中加入大量的中性盐以破坏蛋白质的胶体稳定性而使其析出,这种方法称为盐析。常用的中性盐有硫酸铵、硫酸钠、氯化钠等。各种蛋白质盐析时所需的盐浓度及pH不同,故可用于对混和蛋白质组分的分离。例如用半饱和的硫酸铵来沉淀出血清中的球蛋白,饱和硫酸铵可以使血清中的白蛋白、球蛋白都沉淀出来,盐析沉淀的蛋白质,经透析除盐,仍保证蛋白质的活性。调节蛋白质溶液的pH至等电点后,再用盐析法则蛋白质沉淀的效果更好。

(二)重金属盐沉淀蛋白质

蛋白质可以与重金属离子如汞、铅、铜、银等结合成盐沉淀,沉淀的条件以pH稍大于等电点为宜。因为此时蛋白质分子有较多的负离子易与重金属离子结合成盐。重金属沉淀的蛋白质常是变性的,但若在低温条件下,并控制重金属离子浓度,也可用于分离制备不变性的蛋白质。

临床上利用蛋白质能与重金属盐结合的这种性质,抢救误服重金属盐中毒的病人,给病人口服大量蛋白质,然后用催吐剂将结合的重金属盐呕吐出来解毒。

(三)生物碱试剂以及某些酸类沉淀蛋白质

蛋白质又可与生物碱试剂(如苦味酸、钨酸、鞣酸)以及某些酸(如三氯醋酸、过氯酸、硝酸)结合成不溶性的盐沉淀,沉淀的条件应当是pH小于等电点,这样蛋白质带正电荷易于与酸根负离子结合成盐。

临床血液化学分析时常利用此原理除去血液中的蛋白质,此类沉淀反应也可用于检验尿中蛋白质。

(四)有机溶剂沉淀蛋白质

可与水混合的有机溶剂,如酒精、甲醇、丙酮等,对水的亲和力很大,能破坏蛋白质颗粒的水化膜,在等电点时使蛋白质沉淀。在常温下,有机溶剂沉淀蛋白质往往引起变性。例如酒精消毒灭菌就是如此,但若在低温条件下,则变性进行较缓慢,可用于分离制备各种血浆蛋白质。

(五)加热凝固

将接近于等电点附近的蛋白质溶液加热,可使蛋白质发生凝固(coagulation)而沉淀。加热首先是加热使蛋白质变性,有规则的肽链结构被打开呈松散状不规则的结构,分子的不对称性增加,疏水基团暴露,进而凝聚成凝胶状的蛋白块。如煮熟的鸡蛋,蛋黄和蛋清都凝固。

蛋白质的变性、沉淀,凝固相互之间有很密切的关系。但蛋白质变性后并不一定沉淀,变性蛋白质只在等电点附近才沉淀,沉淀的变性蛋白质也不一定凝固。例如,蛋白质被强酸、强碱变性后由于蛋白质颗粒带着大量电荷,故仍溶于强酸或强减之中。但若将强碱和强酸溶液的pH调节到等电点,则变性蛋白质凝集成絮状沉淀物,若将此絮状物加热,则分子间相互盘缠而变成较为坚固的凝块。

五、蛋白质的呈色反应

(一)茚三酮反应(Ninhydrin Reaction)

α-氨基酸与水化茚三酮(苯丙环三酮戊烃)作用时,产生蓝色反应,由于蛋白质是由许多α-氨基酸组成的,所以也呈此颜色反应。

(二)双缩脲反应(Biuret Reaction)

蛋白质在碱性溶液中与硫酸铜作用呈现紫红色,称双缩脲反应。凡分子中含有两个以上-CO-NH-键的化合物都呈此反应,蛋白质分子中氨基酸是以肽键相连,因此,所有蛋白质都能与双缩脲试剂发生反应。

(三)米伦反应(Millon Reaction)

蛋白质溶液中加入米伦试剂(亚硝酸汞、硝酸汞及硝酸的混和液),蛋白质首先沉淀,加热则变为红色沉淀,此为酪氨酸的酚核所特有的反应,因此含有酪氨酸的蛋白质均呈米伦反应。

此外,蛋白质溶液还可与酚试剂、乙醛酸试剂、浓硝酸等发生颜色反应。

第五节 蛋白质的分类

蛋白质的种类繁多,结构复杂,迄今为止没有一个理想的分类方法。着眼的测面不同,分类也就各异,例如从蛋白质形状上,可将它们分为球状蛋白质及纤维状蛋白质;从组成上可分为单纯蛋白质(分子中只含氨基酸残基)及结合蛋白质(分子中除氨基酸外还有非氨基酸物质,后者称辅基);单纯蛋白质又可根据理化性质及来源分为清蛋白(又名白蛋白,albumin)、球蛋白(globulin)、谷蛋白(glutelin)、醇溶谷蛋白(prolamine)、精蛋白(protamine)、组蛋白(histone)、硬蛋白(scleroprotein)等(见表1?)。结合蛋白又可按其辅基的不同分为核蛋白(nucleoprotein)、磷蛋白(phosphoprotein)、金属蛋白(metalloprotein)、色蛋白(chromoprotein)等(见表1-5)。

此外,还可以按蛋白质的功能将其分为活性蛋白质(如酶、激素蛋白质、运输和贮存蛋白质、运动蛋白质、受体蛋白质、膜蛋白质等)和非活性蛋白质(如胶原、角蛋白等)两大类。

表1-4 蛋白质按溶解度分类

蛋白质分类 举  例 溶 解 度
白蛋白 血清白蛋白 溶于水和中性盐溶液,不溶于饱和硫酸铵溶液
球蛋白 免疫球蛋白、纤维蛋白原 不溶于水,溶于稀中性盐溶液,不溶于半饱和和硫酸铵溶液
谷蛋白 麦谷蛋白 不溶于水、中性盐及乙醇;溶于稀酸、稀硷
醇溶谷蛋白 醇溶谷蛋白、醇溶玉米蛋白 不溶于水、中性盐溶液;溶于70-80%乙醇中
硬蛋白 角蛋白、胶原蛋白、弹性蛋白 不溶于水、稀中性盐、稀酸、稀硷和一般不机溶剂
组蛋白 胸腺组蛋白 溶于水、稀酸、稀硷、不溶于稀氨水
精蛋白 鱼精蛋白 溶于水,稀酸,稀硷、稀氨水

表1-5 蛋白质按化学成分分类


蛋白质类别 举  例 非蛋白成分(辅基)
单纯蛋白质 血清蛋白,球蛋白
核蛋白 病毒核蛋白,染色体蛋白 核酸
糖蛋白 免疫球蛋白、粘蛋白,蛋白多糖 糖类
脂蛋白 乳糜微粒、低密度脂蛋白、极度密度脂蛋白、高密度脂蛋白 各种脂类
磷蛋白 酪蛋白、卵黄磷酸蛋白 磷酸
色蛋白 血红蛋白、黄素蛋白 色素
金属蛋白 铁蛋白、铜兰蛋白 金属离子

参考资料

蛋白质一级结构的测定方法

研究蛋白质的一级结构从确定组成蛋白质的单元结构?氨基酸算起,已有150年的悠久历史,直到1955年,Sanger首次阐明胰岛素的氨基酸排列顺序,为研究蛋白质的一级结构开辟了道路。这在分子生物学的发展进程中是一个重要突破。目前关于核酸的一级结构研究,由于Sanger等发明了加减法,可以得到了突飞猛进的发展。对此之下,关于蛋白质的一级结构研究进展不如核酸迅速。但随着Edman液相自动顺序分析仪和固相顺序分析仪以及气相色谱?质谱(GC?MS)等方法的相继出现。使结构分析的速度也显著加快。至今已完成近千种蛋白质的一级结构分析。目前不仅样品用量减少,而且工作人员也大大减少。当年Sanger分析胰岛素用了整整十年的时间,今天运用自动化仪器,分析一个分子量在10万左右的蛋白质只需要几天,可见新技术的应用和发展对科学发展起的促进作用,蛋白质一级结构测定方法的综述及专著文献较多,这里只扼要加以概述。

蛋白质分子的一级结构测定,概括起来包含多肽链的分离、降解、肽段的分离和顺序分析以及-S-S-定位等。

蛋白质一级结构的测定方法

一级结构的测定方法可概述如下:

1.多肽链的分离

在测定一个蛋白质的结构以前,首先必须保证被测蛋白质的纯度,使结果准确可靠。其次要了解它的分子量和亚基数,按照其亚基数将蛋白质分成几个多肽链。

1)肽链的拆开

蛋白质分子多肽链的连接有共价结合和非共价结合两种。要拆开以共价结合的-S-S-连接的多肽链,必须采用的化学处理方法常有:

①过甲酸氧化

用氧化剂过甲酸断裂-S-S-。这个反应一般在0℃下进行2小时左右,两个S就全部能转变成磺酸基,这样被氧化的半胱氨酸称为磺基丙氨酸。

蛋白质一级结构的测定方法

如果蛋白质分子中同时存在半胱胺酸,那么也会被氧化成磺基丙氨酸。此外甲硫氨酸和色氨酸也可被氧化,从而增加分析的复杂性。

②巯基乙醇还原

利用还原剂巯基乙醇亦可使蛋白质的-S-S-断裂。当高浓度的巯基乙醇在pH8?条件下室温保温几小时后,可以使-S-S-定量还原为桽H。与此同时反应系统中还需要有8摩尔脲或6摩尔盐酸胍使蛋白质变性,多肽链松散成为无规则的构型,此时还原剂就可作用于-S-S-。此反应是可逆的,因此要使反应完全,疏基乙醇的浓度必需在0.1-0.5摩尔。

蛋白质一级结构的测定方法

③Cleland试剂的还原作用

Cleland′s指出二硫赤苏糖醇(dithioerythriotol)及二硫苏糖醇(dithiothriotol)在氧化还原能力上是比较强的试剂,只要0.01摩尔就能使蛋白质的-S-S-还原,反应基本与疏基乙醇相似,且在许多球蛋白反应中,可以不用变性剂。

Cleland试剂首先与蛋白质-S-S-形成中间物,反应终了,还原剂被氧化形成一个稳定的六环化合物,蛋白质则被还原。

蛋白质一级结构的测定方法

还原蛋白不稳定,SH基极易氧化重新生成-S-S-键。稳定SH基的方法有:

(A)烷基化试剂使SH基转变为稳定的硫醚衍生物。

蛋白质一级结构的测定方法

如果碘代乙酰胺代替碘代乙酸,其产物S?羧氨甲基衍生物不带电荷,磺代乙酸也可与组氨酸、蛋氨酸和赖氨酸发生反应,但反应条件不同,可通过各种pH及反应时间进行控制。

(B)氨乙基化

蛋白质一级结构的测定方法

蛋白质分子的几条肽链若以非共价健结合,则用尿素、盐酸胍等变性剂即可拆开。蛋白质的多肽链被拆开后,将它分离纯化,一般多用凝胶过滤、离子交换、电泳等方法,兹不赘述。

分离纯化后的每条肽链还要进一步分析其末端。

2)末端分析 其方法较多,这里我们只介绍较常用的几种。

(1)N-末端测定

A.二硝基氟苯法(FDNB,DNFB):1945年Sanger提出此方法,是他的重要贡献之一。

蛋白质一级结构的测定方法

蛋白质一级结构的测定方法

DNP-氨基酸用有机溶剂抽提后,通过层析位置可鉴定它是何种氨基酸。Sanger用此方法测定了胰岛素的N?末端分别为甘氨酸及苯丙氨酸。

B.氰酸盐法:1963年Stank及Smyth介绍了一种测定N?末端的新方法,步骤如下:

蛋白质一级结构的测定方法

由于乙内酰脲氨基酸不带电荷,因此可用离子交换层析法将它与游离氨基酸分开,分离所得的乙内酰脲氨基酸再被盐酸水解,重新生成游离的氨基酸,鉴别此氨基酸即可了解N-末端是何种氨基酸。

蛋白质一级结构的测定方法

C.二甲基氨基萘磺酰氯法:1956年Hartley等报告了一种测定N-末端的灵敏方法,采用1-二甲基氨基萘-5-磺酰氯,简称丹磺酰氯。它与游离氨基末端作用,方法类似于Sanger的DNFB法,产物是磺酰胺衍生物。

蛋白质一级结构的测定方法

蛋白质一级结构的测定方法

丹磺酰链酸具有强烈的黄色荧光。此法优点为灵敏性较高(比FDNB法提高100倍,样品量小于1毫微克分子)及丹磺酰氨基酸稳定性较高(对酸水解稳定性较DNP?氨基酸高),可用纸电泳或聚酰胺薄膜层析鉴定。

(2)C-末端分析

A.肼解法:这是测定C-末端最常用的方法。将多肽溶于无水肼中,100℃下进行反应,结果羧基末端氨基酸以游离氨基酸状释放,而其余肽链部分与肼生成氨基酸肼。

蛋白质一级结构的测定方法

这样羧基末端氨基酸可以采用抽提或离子交换层析的方法将其分出而进行分析。如果羧基末端氨基酸侧链是带有酰胺如天冬酰胺和谷氨酰胺,则肼解时不能产生游离的羧基末端氨基酸。此外肼解时注意避免任何少量的水解,以免释出的氨基酸混淆末端分析。

B.羧肽酶水解法:羧肽酶可以专一性地水解羧基末端氨基酸。根据酶解的专一性不同,可区分为羧肽酶A、B和C。应用羧肽酶测定末端时,需要事先进行酶的动力学实验,以便选择合适的酶浓度及反应时间,使释放出的氨基酸主要是C末端氨基酸。

3)氨基酸组成分析

在进一步分析多肽链的氨基酸顺序之前,首先应了解它是由那几种氨基酸组成的,每种氨基酸有多少?分析组成的方法有:

①层析法

将多肽链完全酸水解成游离氨基酸,然后进行Dansyl标记,聚酰胺薄膜层析,此方法在蛋白质结构分析中是一种超微量的分析术,但此方法用于定量分析尚不够准确。

②离子交换层析法

Spaekman等发展了一种精确的氨基酸组分的定量方法。他们采用磺酸型的离子交换树脂,这是一种高分子量的固体聚苯乙烯,带有大量的功能基团,磺酸基在低pH和低离子强度条件下,根据氨基酸的酸碱性,氨基酸带正电,于是替换下树脂上的Na+,借助静电作用而结合到磺酸基上。

蛋白质一级结构的测定方法

由于各种氨基酸在树脂上的亲和力不同,因此当改变溶液pH和离子强度,便可依次将它们洗脱下来而分开,并进行定量测定。在此基础上发展了氨基酸自动分析仪。随着科学技术的日益进展,氨基酸自动分析仪在样品的用量,分离速度及检测能力上也有了很大的提高。目前最好的仪器样品分析量只要几十Picomole,分析时间只要数十分钟,而且计算全部自动化,给研究蛋白质一级结构带来了极大的方便。

2.多肽链的降解

多肽链的氨基酸组成往往是比较复杂,因此直接分析多肽的氨基酸顺序还是很困难的,多采用将多肽链进一步降解成为更小的片段,然后再行分析。肽键的裂解是一级结构研究工作中的重要问题,它要求裂解点少,选择性强,而且反应产率高,目前主要有化学法和酶解法两类。

1)化学法

(1)溴化氰法 是最理想的化学方法,能选择性断裂甲硫氨酸所在的肽键

蛋白质一级结构的测定方法

溴化氢化学降解法其优点:

①一般蛋白质含甲硫氨酸较少,由此可获得大片段

②专一性强

③产率高达80%以上

④作用条件温和,在室温中用几到十几小时即可。

(2)部分酸水解法

Sanger在分析胰岛素的一级结构中采用了此法,即用0.1N盐酸在110℃或用6N盐酸在37℃水解。这种部分酸水解的方法特异性不强,因此对大片段的蛋白质和肽均不合适。

(3)羟胺法

这种方法近十年来开始受人注意,羟胺能专一性地裂解Asn?Gly的肽键,酸性条件下裂解Asn-Pro肽键。已用于某些蛋白质的分析。

(4)N-溴代琥珀酰亚胺法

主要裂解Try处的肽键,五十年代研究较多。但由于它也能断裂Tyr?His肽键,因此应用不广。

2)酶解法

酶水解法较化学法具有更多的优越性,使用也更广泛。因其具有较高专一性,而且水解产率较高,所以可以选择各种不同专一性的酶进行专一性的断裂。

常用的酶有胰蛋白酶、糜蛋白酶、胃蛋白酶和嗜热菌蛋白酶。

胰蛋白酶专一断裂Lys,Arg的羧基侧肽键,如果对Lys,Arg,CysH进行化学修饰可改变胰蛋白酶的断裂性质。

(1)赖氨酸的修饰。将Lys用顺丁烯二酸酐或甲基顺丁烯二酸杆修饰,则胰蛋白酶仅使Arg肽键断裂。

蛋白质一级结构的测定方法

顺丁烯衍生物在中性pH下稳定,胰蛋白酶水解仅使Arg键断裂。在酸性条件下顺丁烯衍生物可脱去封闭,此时再行胰蛋白酶水解,则得赖氨酸为末端的多肽。下述为蛋白质中的赖氨酸,经顺丁烯酰化作用后,被胰蛋白酶水解的例子。

蛋白质一级结构的测定方法

(2)精氨酸的修饰。精氨酸与1,2-和1,3-二羰化合物作用,缩合产物是一杂环化合物,十分稳定。然后胰酶水解仅断裂赖氨酸残基末端的肽键

蛋白质一级结构的测定方法

(3)半胱氨酸的修饰。若肽链内Lys、Arg均较少,则为了增加胰酶的裂解点,可以将半胱氨酸进行氨乙基化,其产物S?β?氨乙基半胱氨酸有类似Lys的结构,胰蛋白酶在水解时,不能识别这微细的变化,从而在半胱氨酸处断裂。

蛋白质一级结构的测定方法

蛋白水解酶的专一性

米源 主要作用点 其它作用点
胰蛋白酶 Arg,Lys
糜蛋白酶 Tyr,Phe,Trp Leu,Met,His,Asu,Gln
弹性蛋白酶 Leu,Ile,Ala 其它等
胃蛋白酶 胃粘膜 Tyr,Phe,Trp,Met,Len Ala,Glu,Asp,其它等
木瓜蛋白酶 Papayplant木瓜植物 Arg,Lys,Gly 其它等
嗜热菌蛋白酶 嗜热解蛋白芽孢杆菌 Leu,Ile,Phe Val,Tyr
枯草杆菌蛋白酶 枯草杆菌 芳香族及脂肪族残基

肽链的裂解和重组大致有三种情况:一种是非特异性裂解,如酸水解。由于裂解的片段较小,造成分离的困难。因此这种非特异性裂解对大分子肽链是不适用的。第二种是特异性裂解,采用两种以上的专一裂解,然后进行组合,这种方法一般也适用于分子量小于5万的蛋白质。第三种是逐步的专一裂解,首先将某种氨基酸进行化学修饰,使水解酶专一断裂某一种氨基酸,分成若干片段,然后解除化学封闭,再用此酶裂解,使曾被封闭过的氨基酸断裂。目前倾向于采用这种裂解方式。

3.肽段的分离

大部分肽段的分离主要通过凝胶过滤法,由于大分子肽溶解度小。往往采用甲酸、醋酸、丙酸等有机溶剂使之溶解。单用凝胶过滤法分离之肽一般纯度不高,常需辅以离子交换层析法,大片段肽可用离子交换葡聚糖作载体,小肽则多用Dowex-50等树脂。

小肽分离还常采用高压电泳与层析相结合的指纹图谱法,得到纯净肽。

4.肽的顺序分析

在蛋白质一级结构的测定中,肽的顺序分析是比较重要的一步。肽的顺序分析也有化学法和酶解法两种。

1)化学法?Edman降解法

这是目前用于顺序分析的最主要的方法。它的原理是从N端开始,逐步降解。将肽先与异硫氰酸苯酯(PTH试剂)在pH8-9条件下作用,肽的NH2末端接到异硫氰酸苯酯的C原子上生成苯异硫甲氨酰肽,简称PTC?肽,在强酸作用下,可使靠近PTC基的氨基酸环化,肽键断裂形成苯氨基噻唑啉酮衍生物和一个失去末端氨基酸的肽链。此肽不被破坏,因而又可出现一个新的N-末端。重复以上的步骤,继续与PTH试剂作用,继续分析,苯氨基噻唑啉酮衍生物很容易由有机溶剂抽提出来进行鉴定。但此衍生物很不稳定,在水中可转化为稳定的乙内酰苯硫脲氨基酸(PTH-氨基酸)。这些步骤通常称为Edman氏逐步降解法。所以可用来测定氨基酸的排列顺序。Edman降解法的优点是样品用量少,灵敏度高。

蛋白质一级结构的测定方法

PTH-氨基酸的鉴定可以用各种层析方法,如纸层析、薄层层析、气相层析和质谱法等,现在多用高压液相层析法。虽然此方法具有很多优点,但是由于操作繁琐,工作量大,所以目前有人根据Edman降解的原理作一系列改进。

下面简单介绍几种方法

A.1967年Edman及Begg介绍了一种Edman降解的液相自动分析装置,使顺序分析开始走向自动化。将样品先在反应杯内旋转成薄膜,使之固定。然后与PITC试剂反应。再用有机溶剂多次抽提除去过剩试剂,因而样品易丢失,且仪器昂贵,使用受到限制。

B.1970年Laursen改进为固相氨基酸顺序仪。此法样品用量少,检出灵敏,可分析20?0肽,其原理是将肽共价结合到惰性支持物上,固定后装柱再行Edman降解。

蛋白质一级结构的测定方法

固相顺序仪的惰性支持物有:

蛋白质一级结构的测定方法

蛋白质一级结构的测定方法

此法成功的关键是肽段的固定,目前采用C端α?羧基固定法,重复法高,其中以高丝氨酸内酯法及双异硫氰酯法(DITC)最好,固定率可达90-95%。

C.另外也有从化学反应的角度考虑,试图改进Edman方法。1976年有人将异硫氰酸苯酯的苯基改变为甲氨偶氮苯,试剂为甲氨偶氨苯?异硫氰酸盐(简称DABITC)。这是一种有色试剂,产物DABIH?氨基酸呈桔黄色,因此鉴定时无需染色,用肉眼即可分辨。此方法灵敏度很高,一次分析小肽段只要几个nanomole样品即可,是目前一种很可取的方法。此外也有人将异硫氰酸酯进行?35S标记,使分析样品更向微量化方向发展。

2)酶解法?肽谱重迭法

分析肽段也可采用酶解法,利用专一性不同的两种酶将一个肽分别断裂成更小的寡肽,比较两种方法所得之肽段的重复性,进行氨基酸顺序的装配。例如,有一个肽段,通过氨基酸组成分析已知其为十肽,假如先以糜蛋白酶水解,则得到一套寡肽,再以胰蛋白酶水解此十肽,得到另一套寡肽。分析结果如下:

Ala·Phe+Gly·Lys·Asn·Tyr+Arg·Trp+His·Val

糜蛋白酶水解

+肽(Ala·Phe·Gly·Lys·Asn·Tyr·Arg·Trp·His·Val)

胰蛋白酶水解

Ala·Phe·Gly·Lys+Asa·Tyr·Arg+Trp·His·Val

将此两套寡肽可以做分析比较,因为十肽的N末端及C末端已事先测定分别为Ala及Val,因此第一段寡肽必然是Ala,Phe。如此类推如下

寡肽号 氨基酸组成部分顺序
A-1 Ala·Pha
B-1 Ala·Phe·Gly·Lys
A-2 Gly·Lys·Asn·Tyr
B-2 Asn·Tyr·Arg
A-3 Arg·Trp
B-3 Trp·His·Val
A-4 His·Val
+肽顺序 Ala·Phe·Gly·Lys·Asn·Tyr·Arg·Trp·His·Val

水解酶也可运用二肽酶,两组可用同一种酶水解如第一套肽是A桞,C桪,E桭,G桯……第二套肽水解则先将该肽段N?端切去一个末位氨基酸,然后再开始二肽酶断裂,结果是A,B桟,D桬,F桮……这样分析比较也可排列出肽段顺序。

5.二硫键定位

蛋白质分子不经任何处理,直接用酶水解,检出其中二硫键的肽段,然后将二硫键拆开,分别测定两个肽的顺序,将此两肽结构与测出的一级结构比较,就能找出相应的二硫键的位置。

含二硫键肽的检出方法。

1)凝胶过滤或离子交换层析:用以分离各肽段,然后用特殊的二硫键显色反应找出含二硫键的肽。

对角线电泳技术图解

图1-21 对角线电泳技术图解

2)对角线电泳或层析:1966年Brown及Hartlay提出用对角线电泳进行含-S-S-肽的定位,此方法是将水解后的肽混合物进行第一相电泳,样品点在中间,电泳毕,将样品纸条剪下,置于装有过甲酸的器皿中,用过甲酸蒸气处理2小时,使-S-S-断裂,此时含-S-S-肽段的静电荷发生了改变。然后将纸条缝于另一张纸上,进行第二相电泳电泳,电泳条件与第一相相同,只是与第一次方向成直角。在第二相电泳中,那些不含-S-S-的髣民泳情况与第一相相同,因此电泳后各肽斑均坐落在纸的对角线上,而那些含-S-S-的肽由于被氧化,电荷发生变化,第二相电泳速度就与第一相不同,电泳结果这些肽斑就偏离对角线,肽斑可用茚三酮显示。对角线法由于其速度快,操作简便以及能用于小分子样品,是直接分离-S-S-肽的好方法。

含-S-S-肽被分离后,即可进行肽段顺序分析,并与已测定的该蛋白质的一级结构进行比较,即可找出相应的-S-S-位置,至此蛋白质的一级结构基本阐明。

今后蛋白质一级结构的测定正朝自动化、快速化及微量化发展,关键问题仍然是进一步寻找蛋白裂解和肽分离的方法。

蛋白质一级结构的测定不断有新方法和新思路出现,如X衍射法测定一级结构;分离相应蛋白质的mRNA,由mRNA的一级结构排出蛋白质的一级结构等。这些大胆的设想必将有助于蛋白质的一级结构测定,使人们掌握更多的工具和方法去探索生命的奥秘。